Annual Drinking Water Quality Report Spring Lake Heights Water Department

For the Year 2024, Results from the Year 2023

We are pleased to present to you this year's Annual Drinking Water Quality Report. This report is designed to inform you about the quality of water and services we deliver to you every day. We have three wells, and we purchase water from the New Jersey Water Supply Authority, Manasquan Reservoir Water Supply System. Our wells draw their water from the Mount Laurel and Englishtown Aquifers and are between 400 and 500 feet deep. The Manasquan Water Treatment Plant, located on Hospital Road in the Allenwood section of Wall Township, is owned by the Monmouth County Improvement Authority and is operated by the New Jersey Water Supply Authority. The Manasquan Water Treatment Plan takes its water from the Manasquan River in Wall Township and the Manasquan Reservoir in Howell Township.

If you are a landlord, you must distribute this Drinking Water Quality Report to every tenant as soon as practicable, but no later than three business days after receipt. Delivery must be by hand, mail, or email, and by posting the information in a prominent location at the entrance of each rental premises, pursuant to section #3 of N.J. P. L. 2021 c.82 (C58:12A-12.4 et seq.).

The New Jersey Department of Environmental Protection (NJDEP) has completed and issued the Source Water Assessment Reports and Summaries for these public water systems, which are available at http://www.nj.gov/dep/watersupply/swap/index.html or by contacting NJDEP's Bureau of Safe Drinking Water at 1-609-292-5550 or watersupply@dep.nj.gov. You may also contact your public water system to obtain information regarding your water system's Source Water Assessment. The source water susceptibility ratings and a list of potential contaminant sources for these water systems is included.

We are pleased to report that our drinking water meets all federal and state safety requirements.

Spring Lake Heights Water Department 2023 Test Results

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbiological

contaminants are availal	ole from the S	afe Drinking Water Hotlin	e 1-800-426-4791.							
Contaminant	Violation	Level Detected	Units of	MCLG	MCL	Likely Source	of Contamination			
	(Y/N)		Measurement							
Radioactive Contaminan										
Combined Radium	N	1.5	pCi/L	0	5	Erosion of natu	ıral deposits			
(-226 & -228)										
Test Results Yr. 2018										
			ganic Contaminants							
Barium	N	0.7	ppm	2	2	Discharge of d				
Test Results Yr. 2021							metal refineries;			
						erosion of natu				
Copper	N	P90 = 0.16	ppm	1.3	*TT	Corrosion of he	ousehold plumbing			
Test Results Yr. 2022		No samples exceeded the			AL =	systems; erosic	on of natural deposits			
		action level.			1.3					
Lead	N	P90 = ND	ppb	0	*TT	Corrosion of he	ousehold plumbing			
Test Results Yr. 2022		No samples exceeded the			AL =	systems, erosion of natural deposits				
		action level.			15					
Nitrate (as Nitrogen)	N	0.3	ppm	10	10	Runoff from fertilizer use; leaching				
Test Results Yr. 2023						from septic tanks, sewage; erosion o				
						natural deposit	S			
Selenium	N	3	ppb	50	50	Discharge from petroleum and metal				
Test Results Yr. 2021						refineries; eros	ion of natural			
						deposits; discharge from mines				
Disinfection Byproducts										
TTHM (Total	N	Range: 19.5 – 64.2	ppb	N/A	80	By-product of	drinking water			
Trihalomethanes)		Highest LRAA: 44.9				disinfection	-			
Test Results Yr. 2023										
HAA5 (Total Haloacetic	N	Range: 9.9 – 32.0	ppb	N/A	60	By-product of	drinking water			
Acids)		Highest LRAA: 27.1				disinfection	-			
Test Results Yr. 2023										
Synthetic Organic Conta	minants - PF	AS								
PFOA	N	2.3	ppt	N/A	14	Discharge fron	n industrial, chemical,			
Perfluorooctanoic Acid						and manufacturing factories, release				
Test Results Yr. 2023						of aqueous filn	n forming foam			
Regulated Disinfectants										
Chlorine		Highest Annual	Average	Range		MRDL	MRDLG			
Test Results Yr. 2023		0.	.85 ppm	0.3 – 1.1 p	pm	4.0 ppm	4.0 ppm			
Water additive used to cor	ntrol microbes		**	1	-	1.	**			

HAA5 and TTHM compliance is based on a Locational Running Annual Average (LRAA), calculated at each monitoring location. The LRAA calculation is based on four completed quarters of monitoring results.

	Spring Lake Heights Water Department 2023 Test Results													
		;	Secondary	y Contaminant	s									
Compound	Units of Measurement	Average Level Detected	Range Detected	Recommended Upper Limit	Likely Source									
Chloride	ppm	39.8	39.8	250	Erosion of natural deposits; roadway ice and snow control									
Foaming Agents	ppm	0.06	0.06	0.5	Surfactants used for detergents and other products									
Hardness	ppm	80	80	250	Natural characteristic									
Iron	ppm	0.2	0.2	0.3	Natural mineral									
pН	ppm	7.4	7.4	6.5 - 8.5	Natural characteristic									
Sodium	ppm	30	30	50	Erosion of natural deposits; roadway ice and snow control									
Sulfate	ppm	18.7	18.7	250	Natural mineral									
Zinc	ppm	0.2	0.2	5	Natural mineral									

	Spring Lake	Heights Unregulated	Contaminant Monito	oring Rule 5 Data
Unregulated Contaminant	Average Level	Range	Units	Likely Source of Contamination
PFOA	3.5	ND – 6.8	ppt	PFAS are a group of synthetic chemicals used in a wide range of consumer products and industrial
PFOS	0.8	ND – 4.8	ppt	applications including: non-stick cookware, water- repellent clothing, stain resistant fabrics and carpets,
PFHxA	1.25	ND – 4	ppt	cosmetics, firefighting foams, electroplating, and products that resist grease, water, and oil. PFAS are
PFHxS	0.5	ND – 3	ppt	found in the blood of people and animals and in
PFPeA	1.25	ND – 4.1	ppt	water, air, fish, and soil at locations across the United States and the world.

The Spring Lake Heights Water Department and the Manasquan Water Supply routinely monitor for contaminants in your drinking water according to federal and state laws. The tables show the results of monitoring for the period of January 1st to December 31st, 2023. The state allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old. Additionally, the Safe Drinking Water Act regulations allow monitoring waivers to reduce or eliminate the monitoring requirements for asbestos and synthetic organic chemicals (SOCs). Our system received a monitoring waiver for asbestos and was granted an SOC waiver for the previous compliance periods. The NJDEP has not yet issued SOC waivers for the current period, but our system has applied for and expects to receive a waiver for the current compliance period upon NJDEP determination. The Manasquan Water Supply System did not receive monitoring waivers for asbestos or SOC for the current monitoring period.

What are PFOA and PFOS?

Perfluorooctanoic acid (PFOA) and perfluorooctanoic sulfonate (PFOS) are per-and polyfluoroalkyl substances (PFAS), previously referred to as perfluorinated compounds or PFCs, that are man-made and used in industrial and commercial applications. PFOA was used as a processing aid in the manufacture of fluoropolymers used in non-stick cookware and other products, as well as other commercial and industrial uses based on its resistance to harsh chemicals and high temperatures. PFOS is used in metal plating and finishing as well as in various commercial products. PFOS was previously used as a major ingredient in aqueous film forming foams for firefighting and training, and PFOA and PFOS are found in consumer products such as stain resistant coatings for upholstery and carpets, water resistant outdoor clothing, and grease proof food packaging. Although the use of PFOA and PFOS has decreased substantially, contamination is expected to continue indefinitely because these substances are extremely persistent in the environment and are soluble and mobile in water. More information can be found at: https://dep.ni.gov/pfas/drinking-water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- · Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.
- Radioactive contaminants which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

DEFINITIONS

In the "Test Results" tables, you may find some terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Non-Detects (ND) – Laboratory analysis indicates that the constituent is not present.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter (µg/l) – one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Parts per trillion (ppt) or Nanograms per liter (ng/l) – one part per trillion corresponds to one minute in 20,000 years, or a single penny in \$100,000,000.

Picocuries per liter (pCi/L) – picocuries per liter is a measure of the radioactivity in water.

Action Level - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Treatment Technique - A required process intended to reduce the level of a contaminant in drinking water.

<u>Maximum Contaminant Level</u> – The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal – The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

<u>Maximum Residual Disinfectant Level</u> (MRDL) - The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

<u>Maximum Residual Disinfectant Level Goal (MRDLG)</u> - The level of a drinking water disinfectant, below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.

Nephelometric Turbidity Unit (NTU) – nephelometric turbidity unit is a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

Secondary Contaminant – Substances that do not have an impact on health. Secondary Contaminants affect aesthetic qualities such as odor, taste, or appearance. Secondary standards are recommendations, not mandates.

Recommended Upper Limit (RUL) – Recommended maximum concentration of secondary contaminants. These reflect aesthetic qualities such as odor, taste, or appearance. RULs are recommendations, not mandates.

<u>Total Organic Carbon</u> (TOC) – We are required to remove a certain percentage of (TOC) from our drinking water on a monthly basis. Total Organic Carbon has no adverse health effects. However, TOC provides a medium for the formation of disinfection byproducts.

Turbidity - A measure of the particulate matter or "cloudiness of the water. High turbidity can hinder the effectiveness of disinfectants.

Manasquan Water Supply 2023 Test Results PWSID # NJ1352005

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

Contaminant	Violation	Level Detected	Units of	MCLG	MCL	Likely Source of Contamination
	(Y/N)		Measurement			
Radioactive Contami	<u>nants – Radionu</u>					
Alpha Emitters	NO	Highest Level: 0.75 +/0 0.32 (One sample)	pCi/L	0	15	Erosion of natural deposits
Combined Radium (-226 & -228)	NO	ND	pCi/L	0	5	Erosion of natural deposits
Radium 226	NO	Highest Level: 0.12 +/0.53 (One sample)	pCi/L	0	5	Erosion of natural deposits
Radium 228	NO	Highest Level: 0.24 +/- 0.77 (One sample)	pCi/L	0	5	Erosion of natural deposits
Microbiological Cont	aminants		•	•	•	
Total Coliform Bacteria	NO	Highest Level: 0 Range Detected: 0	# of required samples – (12 per year)	0	> 2 per month	Naturally present in the watershed
Inorganic Contamina	nts					
Barium	NO	Highest Level: 0.055	ppm	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Nickel	NO	Highest Level: 2.19	ppb	N/A	N/A	Erosion of natural deposits; industrial discharge
Nitrate	NO	Highest Level: 0.248	ppm	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Bromate	NO	Highest Level: 7.11 Range: ND – 7.11 (10 of 12 samples were ND)	ppb	0	10	Reaction of naturally occurring bromide with ozone used in the treatment process
Copper (Biannual)	NO	90 th Percentile: 0.19/0.12 No sites exceeded the action level.	ppm	<1.3	*TT AL = 1.3	Corrosion of household plumbing systems; erosion of natural deposits

Lead (Biannual)	NO	90 th Percentile: 0.99/ND No sites exceeded the	ppb	0	*TT AL = 15	Corrosion of hou systems, erosion	sehold plumbing of natural deposits		
		action level.							
Disinfection Byproduc	ts								
TTHM (Total of 4 compounds in one sample)	NO	Highest Level: 27 Range: <0.5 – 12.2	ppb	N/A	80 (Annual site sampling)	By-product of dr disinfection	inking water		
HAA5	NO	Highest Level: 7.6 Range: <1.0 – 3.9	ppb	N/A	60	By-product of dr disinfection	inking water		
Synthetic Organic Con	taminants -	PFAS							
PFOS	NO	Highest Level: 4.2	ppt	N/A	13		n industrial, chemical, ring factories, release n forming foam		
PFOA	NO	Highest Level: 5.3	ppt	N/A	14	Discharge from i	ndustrial, chemical, g factories, release orming foam		
PFNA	NO	Highest Level: 2.4	ppt	N/A	13		ndustrial, chemical, ng factories, release forming foam		
Suspended and Dissolv	ed Matter R	emoval	I .	.			U		
Total Organic Carbon (TOC)	NO	Annual Average Removal: 37% Minimum Removal 21% Monthly Samples Range: 21% - 50%	%	N/A	average rav 0% if TTH Results are	is 35% to 45% of w water TOC or IM and HAA5	Naturally present in the environment, decaying plant matter		
Turbidity of Filtered Water	NO	Maximum: 0.15 Range: 0.02 – 0.15 100% of samples w <0.3 NTU	NTU ere	0.05	<i>U</i>	1.49 due to - TT = 95% of amples <0.3 NTU	Soil and organic matter runoff		
Regulated Disinfectant	s								
Chlorine			nnual Average	Range		MRDL	MRDLG		
Water additive used to c	ontrol microl	pes 2.07 ppm		0.75 -	2.07 ppm	4 ppm	4 ppm		

Turbidity is a measure of the cloudiness of the water. We monitor it because it is a good indicator of water quality. High turbidity can hinder the effectiveness of disinfectants.

	Manasquan Water Supply Secondary Contaminants / Water Quality Parameters / Unregulated Compounds													
Contaminant	Average Level Detected	Units of Measurement	Recommended	Likely Source of Contamination										
Secondary Contaminants		•												
Zinc	0.39	ppm	5.0	Byproduct of corrosion inhibitor additive										
Fluoride	0.12	ppm	2 (MCL = 4)	Water additive which promotes strong teeth; erosion of natural deposits; industrial discharge										
Sodium	24.2	ppm	50	Erosion of natural deposits; roadway ice and snow control										
Chloride	36	ppm	250	Erosion of natural deposits; roadway ice and snow control										
Unregulated Contaminan	its	•												
PFHxA (Perfluorohexanoic acid)	Highest Level: 2.8	ppt	N/A	Industrial discharge										
PFHxS (Perfluorohexanesulfonic acid)	Highest Level: 5.3	ppt	N/A	Industrial discharge										

Cryptosporidium

Cryptosporidium is a microbial pathogen found in surface water throughout the U.S. Cryptosporidium is usually removed through the filtration process and inactivated by other treatment processes such as ozonation. In order to check for the presence of Cryptosporidium, the USEPA issued the Long-Term Enhanced Surface Water Treatment Rule in January 2006. As part of this rule, the Manasquan System began monthly sampling and testing for Cryptosporidium in October 2016 and this testing continued through its completion in September 2018. The sample results did not show any presence of Cryptosporidium.

Sources of Lead in Drinking Water

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The Spring Lake Heights Water Department and the Manasquan Water Supply System are responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Although most lead exposure occurs from inhaling dust or from contaminated soil, or when children eat paint chips the U.S. Environmental Protection Agency (USEPA) estimates that 10 to 20 percent of human exposure to lead may come from lead in drinking water. Infants who consume mostly mixed formula can receive 40 percent to 60 percent of their exposure to lead from drinking water. Lead is rarely found in the source of your drinking water but enters tap water through corrosion, or wearing away, of materials containing lead in the water distribution system and household plumbing materials. These materials include lead-based solder used to join copper pipes, brass, and chrome-brass faucets, and, in some cases, service lines made of or lined with lead. New brass faucets, fittings, and valves, including those advertised as "lead-free," may still contain a small percentage of lead, and contribute lead to drinking water. The law currently allows end-use brass fixtures, such as faucets, with up to 0.25 percent lead to be labeled as "lead free." However, prior to January 4, 2014, "lead free" allowed up to 8 percent lead content of the wetted surfaces of plumbing products including those labeled National Sanitation Foundation (NSF) certified. Visit the NSF website at www.nsf.org to learn more about lead containing plumbing fixtures. Consumers should be aware of this when choosing fixtures and take appropriate precautions. When water stands in lead service lines, lead pipes, or plumbing systems containing lead for several hours or more, the lead may dissolve into your drinking water. This means the first water drawn from the tap in the morning, or later in the afternoon if the water has not been used all day, can contain fairly high levels of lead.

However, for those served by a lead service line, flushing times may vary based on the length of the service line and plumbing configuration in your home. If your home is set back further from the street a longer flushing time may be needed. To conserve water, other household water usage activities such as showering, washing clothes, and running the dishwasher are effective methods of flushing out water from a service line.

Steps You Can Take to Reduce Exposure to Lead in Drinking Water

For a full list of steps visit: https://www.state.nj.us/dep/watersupply/dwc-lead-consumer.html

Run the cold water to flush out lead. Let the water run from the tap before using it for drinking or cooking any time the water in the faucet has gone unused for more than six hours. The longer the water resides in plumbing the more lead it may contain. Flushing the tap means running the cold-water faucet. Let the water run from the cold-water tap based on the length of the lead service line and the plumbing configuration in your home. In other words, the larger the home or building and the greater the distance to the water main (in the street), the more water it will take to flush properly. Although toilet flushing or showering flushes water through a portion of the plumbing system, you still need to flush the water in each faucet before using it for drinking or cooking. Flushing tap water is a simple and inexpensive measure you can take to protect your health. It usually uses less than one gallon of water.

Use cold, flushed water for cooking and preparing baby formula. Because lead from lead-containing plumbing materials and pipes can dissolve into hot water more easily than cold water, never drink, cook, or prepare beverages including baby formula using hot water from the tap. If you have not had your water sampled or if you know, it is recommended that bottled or filtered water be used for drinking and preparing baby formula. If you need hot water, draw water from the cold tap and then heat it.

Do not boil water to remove lead. Boiling water will not reduce lead; however, it is still safe to wash dishes and do laundry. Lead will not soak into dishware or most clothes.

Use alternative sources or treatment of water. You may want to consider purchasing bottled water or a water filter. Read the package to be sure the filter is approved to reduce lead or contact NSF International at 1-800-NSF-8010 or www.nsf.org for information on performance standards for water filters.

Determine if you have interior lead plumbing or solder. If your home/building was constructed prior to 1987, it is important to determine if interior lead solder or lead pipes are present. You can check yourself, hire a licensed plumber, or check with your landlord.

Replace plumbing fixtures and service lines containing lead. Replace brass faucets, fittings, and valves that do not meet the current definition of "lead free" from 2014 (as explained above). Visit the NSF website at www.nsf.org to learn more about lead-containing plumbing fixtures.

Remove and clean aerators/screens on plumbing fixtures. Over time, particles and sediment can collect in the aerator screen. Regularly remove and clean aerators screens located at the tip of faucets and remove any particles.

Test your water for lead. Please call Stephen Dodd 1-732-449-3500 to find out how to get your water tested for lead. Testing is essential because you cannot see, taste, or smell lead in drinking water.

Get your child tested. Contact your local health department or healthcare provider to find out how you can get your child tested for lead if you are concerned about lead exposure. New Jersey law requires that children be tested for lead in their blood at both 1 and 2 years of age and before they are 6 years old if they have never been tested before or if they have been exposed to a known source of lead.

Have an electrician check your wiring. If grounding wires from the electrical system are attached to your pipes, corrosion may be greater. Check with a licensed electrician or your local electrical code to determine if your wiring can be grounded elsewhere. DO NOT attempt to change the wiring yourself because improper grounding can cause electrical shock and fire hazards.

Water softeners and reverse osmosis units will remove lead from water but can also make the water more corrosive to lead solder and plumbing by removing certain minerals; therefore, the installation of these treatment units at the point of entry into homes with lead plumbing should only be done under supervision of a qualified water treatment professional.

Health Effects of Lead

Lead can cause serious health problems if too much enters your body from drinking water or other sources. It can cause damage to the brain and kidneys and can interfere with the production of red blood cells that carry oxygen to all parts of your body. The greatest risk of lead exposure is to infants, young children, and pregnant women. Scientists have linked the effects of lead on the brain with lowered IQ in children. Adults with kidney problems and high blood pressure can be affected by low levels of lead more than healthy adults. Lead is stored in the bones, and it can be released later in life. During pregnancy, the child receives lead from the mother's bones, which may affect brain development. Contact your local health department or healthcare provider to find out how you can get your child tested for lead if you are concerned about lead exposure. You can find out more about how to get your child tested and how to pay for it at https://www.nj.gov/health/childhood-lead/testing.

In July 2021, P.L.2021, Ch.183 (Law) was enacted, requiring all community water systems to replace lead service lines in their service area within 10 years. Under the law, the Borough of Spring Lake Heights Water Department is required to notify customers, non-paying consumers, and any off-site owner of a property (e.g., landlord) when it is known they are served by a lead service line*. Our service line inventory is available on our website at www.springlakehts.com under water-sewer utility, or upon request.

If you have any questions about this report or concerning your water utility, please call Joseph Langel at 1-732-449-3500. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled Borough Council meetings at Borough Hall, 555 Brighton Avenue. Meetings are held on the second and fourth Mondays of each month at 8:00 p.m.

We at Spring Lake Heights Water Department work hard to provide top quality water to every tap. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life and our children's future. Please call our office if you have questions.

Borough of Spring Lake Heights - PWSID # NJ1349001

Borough of Spring Lake Heights is a public community water system consisting of 3 wells.

This system's source water comes from the following aquifers: Englishtown Aquifer System, Mount Laurel-Wenonah Aquifer System.

This system purchase water from NJWSA Manasquan System and can purchase water from the following water systems: Wall Township Water Department, Spring Lake Water Department.

Susceptibility Ratings for Borough of Spring Lake Heights Sources

The table below illustrates the susceptibility ratings for the seven contaminant categories (and radon) for each source in the system. The table provides the number of wells and intakes that rated high (H), medium (M), or low (L) for each contaminant category. For susceptibility ratings of purchased water, refer to the specific water system's source water assessment report.

The seven contaminant categories are defined at the bottom of this page. DEP considered all surface water highly susceptible to pathogens, therefore all intakes received a high rating for the pathogen category. For the purpose of Source Water Assessment Program, radionuclides are more of a concern for groundwater than surface water. As a result, surface water intakes' susceptibility to radionuclides was not determined and they all received a low rating.

If a system is rated highly susceptible for a contaminant category, it does not mean a customer is or will be consuming contaminated drinking water.

The rating reflects the potential for contamination of source water, not the existence of contamination. Public water systems are required to monitor for regulated contaminants and to install treatment if any contaminants are detected at frequencies and concentrations above allowable levels. As a result of the assessments, DEP may customize (change existing) monitoring schedules based on the susceptibility ratings.

	Pathogens			Nutr	Nutrients			Pesticides			Volatile Organic Compounds			Inorganics			Radionuclides			Radon			Disinfection Byproducts	
Sources	Н	M	L	Н	M	L	Н	M	L	Н	M	L	Н	M	L	Н	M	L	Н	M	L	Н	M	L
Wells - 3			3			3			3			3		2	1			3		1	2		3	

NJ Water Supply Authority - Manasquan System - PWSID # NJ1352005

NJ Water Supply Authority - Manasquan System is a public community water system consisting of 2 surface water intakes.

This system's source water comes from the following surface water bodies: Manasquan Reservoir, Manasquan River.

Susceptibility Ratings for NJ Water Supply Authority - Manasquan System Sources

The table below illustrates the susceptibility ratings for the seven contaminant categories (and radon) for each source in the system. The table provides the number of wells and intakes that rated high (H), medium (M), or low (L) for each contaminant category. For susceptibility ratings of purchased water, refer to the specific water system's source water assessment report.

The seven contaminant categories are defined at the bottom of this page. DEP considered all surface water highly susceptible to pathogens, therefore all intakes received a high rating for the pathogen category. For the purpose of Source Water Assessment Program, radionuclides are more of a concern for groundwater than surface water. As a result, surface water intakes' susceptibility to radionuclides was not determined and they all received a low rating.

If a system is rated highly susceptible for a contaminant category, it does not mean a customer is or will be consuming contaminated drinking water.

The rating reflects the potential for contamination of source water, not the existence of contamination. Public water systems are required to monitor for regulated contaminants and to install treatment if any contaminants are detected at frequencies and concentrations above allowable levels. As a result of the assessments, DEP may customize (change existing) monitoring schedules based on the susceptibility ratings.

	Pathogens Nutrients			Pesticides			Volatile Organic Compounds			Inorganics			Radio- nuclides			Radon			Disinfection Byproducts					
Sources	Н	M	L	Н	M	L	Н	M	L	Н	М	L	Н	M	L	Н	M	L	Н	M	L	Н	M	L
Surface water intakes – 2	2				2			2			2			2				2			2	2		

Pathogens: Disease-causing organisms such as bacteria and viruses. Common sources are animal and human fecal wastes.

Nutrients: Compounds, minerals and elements that aid growth, that are both naturally occurring and man-made. Examples include nitrogen and phosphorus. Volatile Organic Compounds: Man-made chemicals used as solvents, degreasers, and gasoline components. Examples include benzene, methyl tertiary butyl ether (MTBE), and vinyl chloride.

Pesticides: Man-made chemicals used to control pests, weeds, and fungus. Common sources include land application and manufacturing centers of pesticides. Examples include herbicides such as atrazine, and insecticides such as chlordane.

Inorganics: Mineral-based compounds that are both naturally occurring and man-made. Examples include arsenic, asbestos, copper, lead, and nitrate.

Radionuclides: Radioactive substances that are both naturally occurring and man-made. Examples include radium and uranium.

Radon: Colorless, odorless, cancer-causing gas that occurs naturally in the environment. For more information go to http://www.nj.gov/dep/rpp/radon/index.htm or call 1-800-648-0394.

Disinfection Byproduct Precursors: A common source is naturally occurring organic matter in surface water. Disinfection byproducts are formed when the disinfectants (usually chlorine) used to kill pathogens react with dissolved organic material (for example leaves) present in surface water.